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Abstract – Modern multitarget-multisensor tracking
systems involve the development of reliable methods for
the data association and the fusion of multiple sen-
sor information, and more specifically the partioning
of observations into tracks. This paper discusses and
compares the application of Dempster-Shafer Theory
(DST) and the Dezert-Smarandache Theory (DSmT)
methods to the fusion of multiple sensor attributes for
target identification purpose. We focus our attention
on the paradoxical Blackman’s association problem and
propose several approaches to outperfom Blackman’s
solution. We clarify some preconceived ideas about the
use of degree of conflict between sources as potential
criterion for partitioning evidences.

Keywords: Data Association, Entropy, Data Fu-
sion, Uncertainty, Paradox, Dezert-Smarandache the-
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1 Introduction
The association problem is of major importance in

most of modern multitarget-multisensor tracking sys-
tems. This task is particularly difficult when data are
uncertain and are modeled by basic belief masses and
when sources are conflicting. The solution adopted is
usually based on the Dempster-Shafer Theory (DST)
[13] because it provides an elegant theoretical way to
combine uncertain information. However the Demp-
ster’s rule of combination can give rise to some para-
dox/anomaly and can fail to provide the correct so-
lution for some specific association problems. This
has been already pointed out by Samuel Blackman
in [2]. Therefore more study in this area is required
and we propose here a new analysis of the Blackman’s

association problem (BAP). We present in the sequel
the original BAP and remind the classical attempts
to solve it based on DST (including the Blackman’s
method). In the second part of the paper we pro-
pose and compare new approches based on the recent
Dezert-Smarandache Theory (DSmT) of plausible and
paradoxical reasoning [3, 15]. The DSmT can be in-
terpreted as a generalization of the DST and allows to
combine formally any types of sources of information
(rational, uncertain or paradoxical). The last part of
the paper provides a comparison of the performances
of all the proposed approaches from Monte-Carlo sim-
ulation results.

2 The Association Problem

2.1 Association Problem no. 1

Let’s recall now the original Blackman’s association
problem [2]. Consider only two target attribute types
corresponding to the very simple frame of discernment

Θ = {θ1, θ2} and the association/assignment problem
for a single attribute observation Z and two tracks (T1

and T2). Assume now the following two predicted ba-
sic belief assignments (bba) for attributes of the two
tracks:

mT1
(θ1) = 0.5 mT1

(θ2) = 0.5 mT1
(θ1 ∪ θ2) = 0

mT2
(θ1) = 0.1 mT2

(θ2) = 0.1 mT2
(θ1 ∪ θ2) = 0.8

We now assume to receive the new following bba drawn
from attribute observation Z of the system

mZ(θ1) = 0.5 mZ(θ2) = 0.5 mZ(θ1 ∪ θ2) = 0

The problem is to develop a general method to find the
correct assignment of the attribute measure mZ(.) with
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the predicted one mTi
(.), i = 1, 2. Since mZ(.) matches

perfectly with mT1
(.) whereas mZ(.) does not match

with mT2
(.), the optimal solution is obviously given

by the assignment (mZ(.) ↔ mT1
(.)). The problem

is to find an unique general and reliable method for
solving this specific problem and for solving all the
other possible association problems as well.

2.2 Association Problem no. 2

To compare several potential issues, we propose to
modify the previous problem into a second one by keep-
ing the same predicted bba mT1

(.) and mT2
(.) but by

considering now the following bba mZ(.)

mZ(θ1) = 0.1 mZ(θ2) = 0.1 mZ(θ1 ∪ θ2) = 0.8

Since mZ(.) matches perfectly with mT2
(.), the correct

solution is now directly given by (mZ(.) ↔ mT2
(.)).

The sequel of this paper in devoted to the presentation
of some attempts for solving the BAP, not only for
these two specific problems 1 and 2, but for the more
general problem where the bba mZ(.) does not match
perfectly with one of the predicted bba mTi

, i = 1 or
i = 2 due to observation noises.

3 Attempts for solutions
We examine now several approaches which have al-

ready been (or could be) envisaged to solve the general
association problem.

3.1 The simplest approach

The simplest idea for solving BAP, surprisingly not
reported by Blackman in [2] is to use a classical min-
imum distance criterion directly between the predic-
tions mTi

and the observation mZ . The classical L1

(city-block) or L2 (Euclidean) distances are typically
used. Such simple criterion obviously provides the
correct association in most of cases involving perfect
(noise-free) observations mZ(.). But there exists nu-
merical cases for which the optimal decision cannot be
found at all, like in the following numerical example:

mT1
(θ1) = 0.4 mT1

(θ2) = 0.4 mT1
(θ1 ∪ θ2) = 0.2

mT2
(θ1) = 0.2 mT2

(θ2) = 0.2 mT2
(θ1 ∪ θ2) = 0.6

mZ(θ1) = 0.3 mZ(θ2) = 0.3 mZ(θ1 ∪ θ2) = 0.4

From these bba, one gets dL1(T1, Z) = dL1(T2, Z) =
0.4 (or dL2(T1, Z) = dL2(T2, Z) ≈ 0.24) and no de-
cision can be drawn for sure, although the minimum
conflict approach (detailed in next section) will give
us instead the following solution (Z ↔ T2). It is
not obvious in such cases to justify this method with
respect to some other ones. What is more impor-
tant in practice [2], is not only the association solu-
tion itself but also the attribute likelihood function

P (Z|Ti) ≡ P (Z ↔ Ti). As we know many likelihood
functions (exponential, hyperexponential, Chi-square,
Weibull pdf, etc) could be build from dL1(Ti, Z) (or
dL2(Ti, Z) measures but we do not know in general
which one corresponds to the real attribute likelihood
function.

3.2 The minimum conflict approach

The first idea suggested by Blackman for solving the
association problem was to apply the Dempster’s rule
of combination [13] mTiZ(.) = [mTi

⊕ mZ ](.) defined
by mTiZ(∅) = 0 and for any C 6= ∅ and C ⊆ Θ,

mTiZ(C) =
1

1 − kTiZ

∑

A∩B=C

mTi
(A)mZ (B)

and choose the solution corresponding to the min-
imum of conflict kTiZ . The sum in previous for-
mula is over all A, B ⊆ Θ such that A ∩ B = C.
The degree of conflict kTiZ between mTi

and mZ is
given by

∑

A∩B=∅ mTi
(A)mZ(B) 6= 0. Thus, an in-

tuitive choice for the attribute likelihood function is
P (Z|Ti) = 1 − kTiZ . If we now apply the Demp-
ster’s rule for the problem 1, we get the same re-
sult for both assignments, i.e. mT1Z(.) = mT2Z(.)
with mTiZ(θ1) = mTiZ(θ2) = 0.5 for i = 1, 2 and
mTZ(θ1 ∪ θ2) = 0, and more surprisingly, the cor-
rect assignment (Z ↔ T1) is not given by the mini-
mum of conflict between sources since one has actually
(kT1Z = 0.5) > (kT2Z = 0.1). Thus, it is impossi-
ble to get the correct solution for this first BAP from
the minimum conflict criterion as we firstly expected
intuitively. This same criterion provides us however
the correct solution for problem 2, since one has now
(kT2Z = 0.02) < (kT1Z = 0.1). The combined bba for
problem 2 are given by mT1Z(θ1) = mT1Z(θ2) = 0.5
and mT2Z(θ1) = mT2Z(θ2) = 0.17347, mT2Z(θ1 ∪θ2) =
0.65306.

3.3 The Blackman’s approach

To solve this apparent anomaly, Samuel Blackman
has then proposed in [2] to use a relative, rather than
an absolute, attribute likelihood function as follows

L(Z | Ti) , (1 − kTiZ)/(1 − kmin
TiZ)

where kmin
TiZ

is the minimum conflict factor that could
occur for either the observation Z or the track Ti in the
case of perfect assignment (when mZ(.) and mTi

(.) co-
incide). By adopting this relative likelihood function,
one gets now for problem 1

{

L(Z | T1) = 1−0.5
1−0.5 = 1

L(Z | T2) = 1−0.1
1−0.02 = 0.92
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Using this second Blackman’s approach, there is now
a larger likelihood associated with the first assignment
(hence the right assignment solution for problem 1 can
be obtained now based on the max likelihood criterion)
but the difference between the two likelihood values is
very small. As reported by S. Blackman in [2], more

study in this area is required and we examine now some
other approaches. It is also interesting to note that
this same approach fails to solve the problem 2 since
the corresponding likelihood functions for problem 2
become now

{

L(Z | T1) = 1−0.1
1−0.5 = 1.8

L(Z | T2) = 1−0.02
1−0.02 = 1

which means that the maximum likelihood solution
gives now the incorrect assignment (mZ(.) ↔ mT1

(.))
for problem 2 as well, without mentioning the fact that
the relative likelihood function becomes now greater
than one !!!.

3.4 The Tchamova’s approach

Following the idea of section 3.1, Albena Tchamova
has recently proposed in [4] to use rather the L1 (city-
block) distance d1(Ti, TiZ) or L2 (Euclidean) distance
d2(Ti, TiZ) between the predicted bba mTi

(.) and the
updated/combined bba mTiZ(.) to measure the close-
ness of assignments with

dL1(Ti, TiZ) =
∑

A∈2Θ

| mTi
(A) − mTiZ(A) |

dL2(Ti, TiZ) = [
∑

A∈2Θ

[mTi
(A) − mTiZ(A)]2]

1/2

The decision criterion here is again to choose the
solution which yields the minimum distance. This
idea is justified by the analogy with the steady-state
Kalman filter (KF) behavior because if z(k + 1)
and ẑ(k + 1|k) correspond to measurement and
predicted measurement for time k + 1, then the
well-known KF updating state equation [1] is given
by (assuming here that dynamic matrix is identity)
x̂(k + 1|k + 1) = x̂(k + 1|k)+ K(z(k + 1)− ẑ(k + 1|k)).
The steady-state is reached when z(k + 1) coincides
with predicted measurement ẑ(k + 1|k) and therefore
when x̂(k+1|k+1) ≡ x̂(k+1|k). In our context, mTi(.)

plays the role of predicted state and mTiZ(.) the role of
updated state. Therefore it a priori makes sense that
correct assignment should be obtained when mTiZ(.)
tends towards mTi

(.) for some closeness/distance
criterion. Monte Carlo simulation results will prove
however that this approach is also not as good as we
can expect.

It is interesting to note that the Tchamova’s
approach succeeds to provide the correct solution
for problem 1 with both distances criterions since
(dL1(T1, T1Z) = 0) < (dL1(T2, T2Z) ∼ 1.60) and
(dL2(T1, T1Z) = 0) < (dL2(T2, T2Z) ∼ 0.98), but pro-
vides the wrong solution for problem 2 since we will
get both (dL1(T2, T2Z) ∼ 0.29) > (dL1(T1, T1Z) = 0)
and (dL2(T2, T2Z) ∼ 0.18) > dL2(T1, T1Z) = 0).

3.5 The entropy approaches

We examine here the results drawn from several
entropy-like measures approaches. Our idea is now to
use as decision criterion the minimum of the following
entropy-like measures (expressed in nats - i.e. natural
number basis with convention 0 log(0) = 0):

• Extended entropy-like measure:

Hext(m) , −
∑

A∈2Θ

m(A) log(m(A))

• Generalized entropy-like measure [9, 12]:

Hgen(m) , −
∑

A∈2Θ

m(A) log(m(A)/|A|)

• Pignistic entropy:

HbetP (m) , −
∑

θi∈Θ

P{θi} log(P{θi})

where the pignistic(betting) probabilities P (θi) are ob-
tained by

∀θi ∈ Θ, P{θi} =
∑

B⊆Θ|θi∈B

1

|B|
m(B)

It can be easily verified that the minimum en-
tropy criterion (based on Hext, Hgen or HbetP )
computed from combined bba mT1Z(.) or mT2Z(.)
are actually unable to provide us correct solu-
tion for problem 1 because of indiscernibility of
mT1Z(.) with respect to mT2Z(.). For problem
1, we get Hext(mT1Z) = Hext(mT2Z) = 0.69315
and exactly same numerical results for Hgen and
HbetP because no uncertainty is involved in the
updated bba for this particular case. If we now
examine the numerical results obtained for problem
2, we can see that minimum entropy criteria is
also unable to provide the correct solution based
on Hext, Hgen or HbetP criterions since one has
Hext(mT2Z) = 0.88601 > Hext(mT1Z) = 0.69315,
Hgen(mT2Z) = 1.3387 > Hgen(mT1Z) = 0.69315 and
HbetP (mT1Z) = HbetP (mT2Z) = 0.69315.
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These first results indicate that approaches based
on absolute entropy-like measures appear to be useless
for solving BAP since there is actually no reason which
justifies that the correct assignment corresponds to the
absolute minimum entropy-like measure just because
mZ can stem from the least informational source. The
association solution itself is actually independent of
the informational content of each source.

An other attempt is to use rather the minimum of
variation of entropy as decision criterion. Thus, the
following min{∆1(.), ∆2(.)} criterions are examined;
where variations ∆i(.) for i = 1, 2 are defined as the

• variation of extended entropy:

∆i(Hext) , Hext(mTiZ) − Hext(mTi
)

• variation of generalized entropy:

∆i(Hgen) , Hgen(mTiZ) − Hgen(mTi
)

• variation of pignistic entropy:

∆i(HbetP ) , HbetP (mTiZ) − HbetP (mTi
)

Only the 2nd criterion, i.e. min(∆i(Hgen)) provides
actually the correct solution for problem 1 and none
of these criterions gives correct solution for problem 2.

The last idea is then to use the minimum of relative
variations of pignistic probabilities of θ1 and θ2 given
by the minimum on i of

∆i(P ) ,

2
∑

j=1

|PTiZ(θj) − PTi
(θj)|

PTi
(θj)

where PTiZ(.) and PTi
(.) are respectively the pignistic

transformations of mTiZ(.) and mTi
(.). Unfortunately,

this criterion is unable to provide the solution for prob-
lems 1 and 2 because one has here in both problems
∆1(P ) = ∆2(P ) = 0.

3.6 The Schubert’s approach

We examine now the possibility of using a Dempster-
Shafer clustering method based on metaconflict func-
tion (MC-DSC) proposed in Johan Schubert’s research
works [10, 12] for solving the associations problems 1
and 2. A DSC method is a method of clustering un-
certain data using the conflict in Dempster’s rule as
a distance measure [11]. The basic idea is to sepa-
rate/partition evidences by their conflict rather than
by their proposition’s event parts. Due to space limi-
tation, we will just summarize here the principle of the
classical MC- DSC method.

Assume a given set of evidences (bba) E(k) ,

{mTi
(.), i = 1, . . . , n} is available at a given index

(space or time or whatever) k and suppose that a given
set E(k + 1) , {mzj

(.), j = 1, . . . , m} of new bba is
then available for index k + 1. The complete set of
evidences representing all available information at in-
dex k + 1 is χ = E(k) ∪ E(k + 1) , {e1, . . . , eq} ≡
{mTi

(.), i = 1, . . . , n, mzj
(.), j = 1, . . . , m} with q =

n + m. The problem we are faced now is to find the
optimal partition/assignment of χ in disjoint subsets
χp in order to combine informations within each χp in
a coherent and efficient way. The idea is to combine, in
a first step, the set of bba belonging to the same sub-
sets χp into a new bba mp(.) having a corresponding
conflict factor kp. The conflict factors kp are then used,
in a second step, at a metalevel of evidence associated
with the new frame of discernment Θ = {AdP,¬Adp}
where AdP is short for adequate partition. From each
subset χp, p = 1, . . . P of the partition under investi-
gation, a new bba is defined as:

mχp
(¬AdP ) , kp and mχp

(Θ) , 1 − kp

The combination of all these metalevel bba mχp
(.) by

Dempster’s rule yields a global bba

m(.) = mχ1
(.) ⊕ . . . ⊕ mχP

(.)

with a corresponding metaconflict factor denoted
Mcf(χ1, . . . , χP ) , k1,...,P . It can be shown [10] that
the metaconflict factor can be easily calculated directly
from conflict factors kp by the following metaconflict
function (MCF)

Mcf(χ1, . . . , χP ) = 1 −
P

∏

p=1

(1 − kp) (1)

By minimizing the metaconflict function (i.e. by
browsing all potential assignments), we intuitively
expect to find the optimal/correct partition which will
hopefully solve our association problem. Let’s go back
now to our very simple association problems 1 and 2
and examine the results obtained from the MC-DSC
method.

If we consider separately problem 1 and problem
2, all information available is summerized by χ =
{mT1

(.), mT2
(.), mZ(.)}. We now examine all possi-

ble partitions of χ and the corresponding metaconflict
factors and decision (based on minimum metaconflict
function criterion) as follows:

• Analysis for problem 1:

– the (correct) partition χ1 = {mT1
(.), mZ(.)}

and χ2 = {mT2
(.)} yields through Dempter’s
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rule the conflict factors k1 , kT1Z = 0.5 for
subset χ1 and k2 = 0 for subset χ2 since there
is no combination at all (and therefore no
conflict) in χ2. According to (1), the value
of the metaconflict is equal to

Mcf1 = 1 − (1 − k1)(1 − k2) = 0.5 ≡ k1

– the (wrong) partition χ1 = {mT1
(.)} and

χ2 = {mT2
(.), mZ(.)} yields the conflict fac-

tors k1 = 0 for subset χ1 and k2 = 0.1 for
subset χ2. The value of the metaconflict is
now equal to

Mcf2 = 1 − (1 − k1)(1 − k2) = 0.1 ≡ k2

– since Mcf1 > Mcf2, the minimum of the
metaconflict function provides the wrong as-
signment and the MC-DSC approach fails to
generate the solution for the problem 1.

• Analysis for problem 2:

– the (wrong) partition χ1 = {mT1
(.), mZ(.)}

and χ2 = {mT2
(.)} yields through Dempter’s

rule the conflict factors k1 , kT1Z = 0.1 for
subset χ1 and k2 = 0 for subset χ2 since there
is no combination at all (and therefore no
conflict) in χ2. According to (1), the value
of the metaconflict is equal to

Mcf1 = 1 − (1 − k1)(1 − k2) = 0.1 ≡ k1

– the (correct) partition χ1 = {mT1
(.)} and

χ2 = {mT2
(.), mZ(.)} yields the conflict fac-

tors k1 = 0 for subset χ1 and k2 = 0.02 for
subset χ2. The value of the metaconflict is
now equal to

Mcf2 = 1 − (1 − k1)(1 − k2) = 0.02 ≡ k2

– since Mcf2 < Mcf1, the minimum of the
metaconflict function provides in this case
the correct solution for the problem 2.

From these very simple examples, it is interesting to
note that the Schubert’s approach is actually exactly
equivalent (in these cases) to the min-conflict approach
detailed in section 3.2 and thus will not provide bet-
ter results. It is also possible to show that the Schu-
bert’s approach also fails if one considers jointly the
two observed bba mZ1

(.) and mZ2
(.) corresponding to

problems 1 and 2 with mT1
(.) and mT2

(.). If one ap-
plies the principle of minimum metaconflict function,
one will take the wrong decision since the wrong par-
tition {(Z1, T2), (Z2, T1)} will be declared. This result
is in contradiction with our intuitive expectation for
the true opposite partition {(Z1, T1), (Z2, T2)} taking
into account the coincidence of the respective belief
functions.

4 A short DSmT presentation
It has been reported in [4, 8, 10] (and references

therein) that the use of the DST must usually be done
with extreme caution if one has to take a final and
important decision from the result of the Dempter’s
rule of combination. In most of practical fusion ap-
plications based on the DST, some ad-hoc or heuristic
techniques must always be added to the fusion pro-
cess to manage or reduce the possibility of high degree
of conflict between sources. Otherwise, the fusion re-
sults lead to a very dangerous conclusions (or cannot
provide a reliable results at all). The practical limi-
tations of the DST come essentially from its inherent
following constraints which are closely related with the
acceptance of the third exclude principle

(C1) - the DST considers a discrete and finite frame of
discernment Θ based on a set of exhaustive and
exclusive elementary elements θi.

(C2) - the bodies of evidence are assumed independent
and provide their own belief function on the pow-
erset 2Θ but with same interpretation for Θ.

These two constraints therefore do not allow us to
deal with the more general and practical problems
involving uncertain reasoning and the fusion of uncer-
tain, imprecise and paradoxical sources of information.
To overcome these major limitations and drawbacks
relative to the Dempster’s rule of combination, a
recent theory of plausible and paradoxical reason-
ing, called DSmT, has been developed by Dezert and
Smarandache in [3, 14, 15] and recently improved in [4].

The foundations of the DSmT is to refute the prin-
ciple of the third exclude and to allow the possibility
for paradoxes (partial vague overlapping) between
elements of the frame of discernment. The relaxation
of the constraint C1 can be justified since the elements
of Θ correspond generally only to imprecise/vague
notions and concepts so that no refinement of Θ satis-
fying the first constraint is actually possible (specially
if natural language is used to describe elements of Θ).

The DSmT refutes also the excessive requirement
imposed by C2 since it seems clear to us that, the same

frame Θ is usually interpreted differently by the dis-
tinct sources of evidence (experts). Some subjectivity
on the information provided by a source of information
is almost unavoidable, otherwise this would assume,
as within the DST, that all bodies of evidence have an
objective/universal (possibly uncertain) interpretation
or measure of the phenomena under consideration
which unfortunately rarely (never) occurs in reality,
but when bba are based on some objective probabilities
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transformations (in such cases however probability
theory tools become optimal tools to process all the
available information; and the DST - as well as the
DSmT - becomes useless). If we now get out of the
probabilistic background argumentation, we claim
that in most of cases, the sources of evidence provide
their beliefs about some hypotheses only with respect
to their own worlds of knowledge and experience
without reference to the (inaccessible) absolute truth
of the space of possibilities.

The DSmT includes the possibility to deal with ev-
idences arising from different sources of information
which don’t have access to absolute interpretation of
the elements Θ under consideration and can be inter-
preted as a general and direct extension of probability
theory and the Dempster-Shafer theory in the follow-
ing sense. Let Θ = {θ1, θ2} be the simplest frame of
discernment involving only two elementary hypotheses
(with no more assumptions on θ1 and θ2), then

• Probability theory deals with probability assign-
ments m(.) ∈ [0, 1] such that m(θ1) + m(θ2) = 1

• DST deals with bba m(.) ∈ [0, 1] such that m(θ1)+
m(θ2) + m(θ1 ∪ θ2) = 1

• DSmT theory deals with bba m(.) ∈ [0, 1] such
that m(θ1) + m(θ2) + m(θ1 ∪ θ2) + m(θ1 ∩ θ2) = 1

4.1 Hyper-powerset and DSm rule

Let Θ = {θ1, . . . , θn} be a set of n elements which
cannot be precisely defined and separated so that no
refinement of Θ in a new larger set Θref of disjoint
elementary hypotheses is possible. The hyper-power

set DΘ is defined as the set of all composite possibil-
ities build from Θ with ∪ and ∩ operators such that
∀A ∈ DΘ, B ∈ DΘ, (A ∪ B) ∈ DΘ and (A ∩ B) ∈
DΘ. The cardinality of DΘ is majored by 22n

when
Card(Θ) =| Θ |= n. The generation of hyper-power
set DΘ is closely related with the famous Dedekind’s
problem on enumerating the set of monotone Boolean
functions. An algorithm for generating DΘ can be
found in [5] for convenience. From a general frame
of discernement Θ, we define a map m(.) : DΘ → [0, 1]
associated to a given source of evidence B which can
support paradoxical information, as follows

m(∅) = 0 and
∑

A∈DΘ

m(A) = 1

The quantity m(A) is called A’s general basic belief

number (gbba) or the general basic belief mass for A.
The belief and plausibility functions are defined in al-
most the same manner as within the DST, i.e.

Bel(A) =
∑

B∈DΘ,B⊆A

m(B)

Pl(A) =
∑

B∈DΘ,B∩A 6=∅

m(B)

Note that the classical complementary Ac of any
given proposition A is not involved within DSmT
just because of the refutation of the third exclude
principle. These definitions are compatible with
the DST definitions when the sources of informa-
tion become uncertain but rational (they do not
support paradoxical information). We still have
∀A ∈ DΘ, Bel(A) ≤ Pl(A).

The DSm rule of combination m(.) , [m1 ⊕ m2](.)
of two distinct (but potentially paradoxical) sources
of evidences B1 and B2 over the same general frame of
discernment Θ with belief functions Bel1(.) and Bel2(.)
associated with general information granules m1(.) and
m2(.) is then given by ∀C ∈ DΘ,

m(C) =
∑

A,B∈DΘ,A∩B=C

m1(A)m2(B)

Since DΘ is closed under ∪ and ∩ operators, this new
rule of combination guarantees that m(.) : DΘ → [0, 1]
is a proper general information granule. This rule of
combination is commutative and associative and can
always be used for the fusion of paradoxical or ratio-
nal sources of information (bodies of evidence). It is
important to note that any fusion of sources of informa-
tion generates either uncertainties, paradoxes or more

generally both. This is intrinsic to the general fusion
process itself. The theoretical justification of the DSm
rule can be found in [4]. As within the DST framework,
it is possible to build a subjective probability measure
P ?{.} from the bba m(.) with the generalized pignistic
transformation (GPT) [4, 7] defined ∀A ∈ DΘ by,

P ?{A} =
∑

C∈DΘ|A∩C 6=∅

CMf (C ∩ A)

CMf (C)
m(C)

where CMf (X) denotes the DSm cardinal of proposi-
tion X for the free-DSm model Mf of the problem
under consideration here [6]. From any generalized
bba m(.) and its corresponding pignistic transforma-
tion P ?(.), one can also define the following new en-
tropy measures

• New extended entropy-like measure:

H?
ext(m) , −

∑

A∈DΘ

m(A) log(m(A))

• New generalized pignistic entropy :

H?
betP (P ?) , −

∑

A∈V

P ?{A} ln(P ?{A})

where V denotes the parts of the Venn diagram of the
model Mf .
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5 DSmT approaches for BAP
As within DST, several approaches can be at-

tempted to try to solve the Blackman’s Association
problems (BAP). The first attempts are based on the
minimum on i of new extended entropy-like measures
H?

ext(mTiZ) or on the minimum H?
betP (P ?). Both

approaches actually fail for the same reason as for the
DST-based minimum entropy criterions.

The second attempt is based on the minimum of
variation of the new entropy-like measures as criterion
for the choice of the decision with the new extended
entropy-like measure:

∆i(H
?
ext) , H?

ext(mTiZ) − H?
ext(mTi

)

or the new generalized pignistic entropy:

∆i(H
?
betP ) , H?

betP (P ?{.|mTiZ}) − H?
betP (P ?{.|mTi

})

The min. of ∆i(H
?
ext) gives us the wrong solu-

tion for problem 1 since ∆1(H
?
ext) = 0.34657 and

∆2(H
?
ext) = 0.30988 while min. of ∆i(H

?
betP ) give

us the correct solution since ∆1(H
?
betP ) = −0.3040

and ∆2(H
?
betP ) = −0.0960. Unfortunately, both the

∆i(H
?
ext) and ∆i(H

?
betP ) criterions fail to provide

the correct solution for problem 2 since one gets
∆1(H

?
ext) = 0.25577 < ∆2(H

?
ext) = 0.3273 and

∆1(H
?
betP ) = −0.0396 < ∆2(H

?
betP ) = −0.00823.

The third proposed approach is to use the criterion
of the minimum of relative variations of pignistic prob-
abilities of θ1 and θ2 given by the minimum on i of

∆i(P
?) ,

2
∑

j=1

|P ?
TiZ

(θj) − P ?
Ti

(θj)|

P ?
Ti

(θj)

This third approach fails to find the correct solution
for problem 1 (since ∆1(P

?) = 0.333 > ∆2(P
?) =

0.268) but succeeds to get the correct solution for
problem 2 (since ∆2(P

?) = 0.053 < ∆1(P
?) = 0.066).

The last proposed approach is based on relative vari-
ations of pignistic probabilities conditioned by the cor-
rect assignment. The criteria is defined as the mini-
mum of

δi(P
?) ,

|∆i(P
?|Z) − ∆i(P

?|Ẑ = Ti)|

∆i(P ?|Ẑ = Ti)

where ∆i(P
?|Ẑ = Ti) is obtained as for ∆i(P

?) but
by forcing Z = Ti or equivalently mZ(.) = mTi

(.) for
the derivation of pignistic probabilities P ?

TiZ
(θj). This

last criterion yields the correct solution for problem 1
(since δ1(P

?) = |0.333 − 0.333|/0.333 = 0 < δ2(P
?) =

|0.268−0.053|/0.053 ≈ 4) and simultaneously for prob-
lem 2 (since δ2(P

?) = |0.053 − 0.053|/0.053 = 0 <
δ1(P

?) = |0.066− 0.333|/0.333 ≈ 0.8).

6 Monte-Carlo simulations
As shown on the two previous BAP, it is difficult

to find a general method for solving both these par-
ticular (noise-free mZ) BAP and all general problems
involving noisy attribute bba mZ(.). The proposed
methods have been examined only for the original
BAP and no general conclusion can be drawn from our
previous analysis about the most efficient approach.
The evaluation of the global performances/efficiency
of previous approaches can however be estimated quite
easily through Monte-Carlo simulations. Our Monte-
carlo simulations are based on 50.000 independent
runs and have been done both for the noise-free case
(where mZ(.) matches perfectly with either mT1

(.)
or mT2

(.)) and for two noisy cases (where mZ(.)
doesn’t match perfectly one of the predicted bba).
Two noise levels (low and medium) have been tested
for the noisy cases. A basic run consists in generating
randomly the two predicted bba mT1

(.) and mT2
(.)

and an observed bba mZ(.) according to a random
assignment mZ(.) ↔ mT1

(.) or mZ(.) ↔ mT2
(.). Then

we evaluate the percentage of right assignments for all
chosen association criterions described in this paper.
The introduction of noise on perfect (noise-free)
observation mZ(.) has been obtained by the following
procedure (with notation A1 , θ1, A2 , θ2 and
A2 , θ1 ∪ θ2): mnoisy

Z (Ai) = αimZ(Ai)/K where K is

a normalization constant such as
∑3

i=1 mnoisy

Z (Ai) = 1
and weighting coefficients αi ∈ [0; 1] are given by

αi = 1/3 ± εi such that
∑3

i=1 αi = 1.

The table 1 shows the Monte-Carlo results obtained
with all investigated criterions for the following 3 cases:
noise-free (NF), low noise (LN) and medium noise
(MN) related to the observed bba mZ(.). The two first
rows of the table correspond to simplest approach. The
next twelve rows correspond to DST-based approaches.

Assoc. Criterion NF LN MN
Min dL1(Ti, Z) 100 97.98 92.14
Min dL2(Ti, Z) 100 97.90 92.03
Min kTiZ 70.01 69.43 68.77
Min L(Z|Ti) 70.09 69.87 67.86
Min dL1(Ti, TiZ) 57.10 57.41 56.30
Min dL2(Ti, TiZ) 56.40 56.80 55.75
Min Hext(mTiZ) 61.39 61.68 60.85
Min Hgen(mTiZ) 58.37 58.79 57.95
Min HbetP (mTiZ) 61.35 61.32 60.34
Min ∆i(Hext) 57.66 56.97 55.90
Min ∆i(Hgen) 57.40 56.80 55.72
Min ∆i(HbetP ) 71.04 69.15 66.48
Min ∆i(P ) 69.25 68.99 67.35
Min Mcfi 70.1 69.43 68.77

Table 1 : % of success of association methods
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The table 2 shows the Monte-Carlo results obtained
for the 3 cases: noise-free (NF), low noise (LN) and
medium noise (MN) related to the observed bba mZ(.)
with the DSmT-based approaches.

Assoc. Criterion NF LN MN

Min H?
ext(mTiZ) 61.91 61.92 60.79

Min H?
betP (P ?) 42.31 42.37 42.96

Min ∆i(H
?
ext) 67.99 67.09 65.72

Min ∆i(H
?
betP ) 42.08 42.11 42.21

Min ∆i(P
?) 76.13 75.3 72.80

Min δi(P
?) 100 90.02 81.31

Table 2 : % of success of DSmT-based methods

7 Conclusion
A deep examination of the Blackman’s association

problem has been presented. Several methods have
been proposed and compared through Monte Carlo
simulations. Our results indicate that the commonly
used min-conflict method doesn’t provide the best per-
formance in general (specially w.r.t. the simplest dis-
tance approach). Thus the metaconflict approach,
equivalent here to min-conflict, does not allow to get
the optimal efficiency. The Blackman’s approach and
min-conflict give same performances. All entropy-
based methods are less efficient than the min-conflict
approach. More interesting, from the results based
on the generalized pignistic entropy approach, the
entropy-based methods seem actually not appropriate
for solving BAP since there is no fundamental reason to
justify them. The min-distance approach of Tchamova
is the least efficient method among all methods when
abandoning entropy-based methods. Monte carlo sim-
ulations have shown that only methods based on the
relative variations of generalized pignistic probabilities
build from the DSmT outperform all methods exam-
ined in this work but the simplest one.
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